2,698 research outputs found

    Is the JCJ voting system really coercion-resistant?

    Get PDF
    Coercion-resistance is a security property of electronic voting, often considered as a must-have for high-stake elections. The JCJ voting scheme, proposed in 2005, is still the reference when designing a coercion-resistant protocol. We highlight a weakness in JCJ that is also present in all the systems following its general structure. It comes from the procedure that precedes the tally, where the trustees remove the ballots that should not be counted. This phase leaks more information than necessary, leading to potential threats for the coerced voters. Fixing this leads to the notion of cleansing-hiding, that we apply to form a variant of JCJ that we call CHide

    A toolbox for verifiable tally-hiding e-voting systems

    Get PDF
    Cryptology ePrint Archive: Report 2021/491https://eprint.iacr.org/2021/491International audienceIn most verifiable electronic voting schemes, one key step is the tally phase, where the election result is computed from the encrypted ballots. A generic technique consists in first applying (verifiable) mixnets to the ballots and then revealing all the votes in the clear. This however discloses much more information than the result of the election itself (that is, the winners) and may offer the possibility to coerce voters. In this paper, we present a collection of building blocks for designing tally-hiding schemes based on multi-party computations. As an application, we propose the first tally-hiding schemes with no leakage for four important counting functions: D'Hondt, Condorcet, STV, and Majority Judgment. We also unveil unknown flaws or leakage in several previously proposed tally-hiding schemes

    FACET: Fairness in Computer Vision Evaluation Benchmark

    Full text link
    Computer vision models have known performance disparities across attributes such as gender and skin tone. This means during tasks such as classification and detection, model performance differs for certain classes based on the demographics of the people in the image. These disparities have been shown to exist, but until now there has not been a unified approach to measure these differences for common use-cases of computer vision models. We present a new benchmark named FACET (FAirness in Computer Vision EvaluaTion), a large, publicly available evaluation set of 32k images for some of the most common vision tasks - image classification, object detection and segmentation. For every image in FACET, we hired expert reviewers to manually annotate person-related attributes such as perceived skin tone and hair type, manually draw bounding boxes and label fine-grained person-related classes such as disk jockey or guitarist. In addition, we use FACET to benchmark state-of-the-art vision models and present a deeper understanding of potential performance disparities and challenges across sensitive demographic attributes. With the exhaustive annotations collected, we probe models using single demographics attributes as well as multiple attributes using an intersectional approach (e.g. hair color and perceived skin tone). Our results show that classification, detection, segmentation, and visual grounding models exhibit performance disparities across demographic attributes and intersections of attributes. These harms suggest that not all people represented in datasets receive fair and equitable treatment in these vision tasks. We hope current and future results using our benchmark will contribute to fairer, more robust vision models. FACET is available publicly at https://facet.metademolab.com

    Metallic microswimmers driven up the wall by gravity

    Get PDF
    Experiments on autophoretic bimetallic nanorods propelling within a fuel of hydrogen peroxide show that tail-heavy swimmers preferentially orient upwards and ascend along inclined planes. We show that such gravitaxis is strongly facilitated by interactions with solid boundaries, allowing even ultraheavy microswimmers to climb nearly vertical surfaces. Theory and simulations show that the buoyancy or gravitational torque that tends to align the rods is reinforced by a fore-aft drag asymmetry induced by hydrodynamic interactions with the wall.MRSEC Program of the National Science Foundation under Award DMR-1420073 NSF Grants DMS-RTG-1646339, DMS-1463962 and DMS-1620331. Tamkeen under the NYU Abu Dhabi Research Institute grant CG002 “la Caixa” Foundation (ID 100010434) fellowship LCF/BQ/PI20/11760014 European Union’s Horizon 2020 under the Marie Sklodowska-Curie grant agreement No 847648

    Ku80 cooperates with CBP to promote COX-2 expression and tumor growth.

    Get PDF
    Cyclooxygenase-2 (COX-2) plays an important role in lung cancer development and progression. Using streptavidin-agarose pulldown and proteomics assay, we identified and validated Ku80, a dimer of Ku participating in the repair of broken DNA double strands, as a new binding protein of the COX-2 gene promoter. Overexpression of Ku80 up-regulated COX-2 promoter activation and COX-2 expression in lung cancer cells. Silencing of Ku80 by siRNA down-regulated COX-2 expression and inhibited tumor cell growth in vitro and in a xenograft mouse model. Ku80 knockdown suppressed phosphorylation of ERK, resulting in an inactivation of the MAPK pathway. Moreover, CBP, a transcription co-activator, interacted with and acetylated Ku80 to co-regulate the activation of COX-2 promoter. Overexpression of CBP increased Ku80 acetylation, thereby promoting COX-2 expression and cell growth. Suppression of CBP by a CBP-specific inhibitor or siRNA inhibited COX-2 expression as well as tumor cell growth. Tissue microarray immunohistochemical analysis of lung adenocarcinomas revealed a strong positive correlation between levels of Ku80 and COX-2 and clinicopathologic variables. Overexpression of Ku80 was associated with poor prognosis in patients with lung cancers. We conclude that Ku80 promotes COX-2 expression and tumor growth and is a potential therapeutic target in lung cancer
    corecore